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A unified method for computing incompressible and compressible flows with
Mach-uniform accuracy and efficiency is described. The method is equally applicable
to stationary and nonstationary flows. A pressure-based discretisation on a staggered
grid in general boundary-fitted coordinates is used for the Euler equations. Extension
to Navier—Stokes is straightforward. Dimensionless variables that remain finite for
all Mach numbers are used. Mach number independent accuracy and efficiency is
shown by numerical experimentseg 1998 Academic Press
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1. INTRODUCTION

When the Mach number in a flow is uniformly low, say below 0.2, solution can take pla
with equations and numerical methods assuming incompressibility. When the Mach nun
is higher, the compressible flow equations need to be employed, and numerical mett
different from those for the incompressible case are used. This leaves us with the ques
what to do when both low and high Mach numbers occur simultaneously in a flow?

What is needed is a method with Mach-uniform accuracy and efficiency, both as
Mach numbem | 0 and wherM = O(1). Straightforward use of standard compressible
methods gives severe convergence problems or even breakdown in the presence of re
with very low Mach number. Therefore efforts have been made to develop special mett
for such flows.

1 Supported by the Dutch Technology Foundation (STW).
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154 BIJL AND WESSELING

For low speed variable density flows asymptotic methods based on series expansic
the Mach number have been developed in [9, 23, 30]. Such methods can only be used \
the Mach number is small enough (less than 0.3 say). Another approach is to improve
low Mach number behavior of compressible methods. Because large investments have
made in codes for compressible flows, much work has been done in this direction. Exten
to low Mach numbers can be done by preconditioning [2, 4, 8, 36, 43, 44, 47, 49]. Anotl
possibility is to perturb the equations with artificial compressibility, replacing the physic
acoustic modes by artificial acoustic modes [3, 9, 15, 27-29, 33, 48, 51]. These meas
usually falsify the time dependence, making time-accurate unsteady computations awkv
or inefficient. Also, usually very small Mach numbers (less than 0.05, say) cannot
handled, or only at increasing expense, and the Ivhit 0 is frequently singular. Such low
Mach numbers are encountered in flows with combustion or in stratified atmospheric flo
Anothertype of method is proposed by Patretill.[32]; here the density is stepped forward
in time by the continuity equation, and a pressure correction is derived from the ene
equation. The method can compute sound waves and nonstationary weakly compres
flows. It would seem that this method does not reduce to a well-known incompressi
method adM | 0. All of the above methods use nonstaggered grids.

Alternatively, one may extend an incompressible method to the compressible case. O
ously, this gives the best prospects for handling the Iivhij 0, assuming that in this limit
a well-proven incompressible scheme is recovered. With a nonstaggered scheme thi:
been done by Demimi€ et al.[6]. A staggered grid was first used to compute compressibl
flows by Harlow and Amsden [10, 11], generalizing the MAC scheme of Harlow and Wel
[12] to the compressible case, in orthogonal coordinates. Later works in this direction, us
general coordinates, are [17, 18, 20, 36, 38, 39]. This is also the approach taken by us |
Staggered schemes have not caught on for compressible flows, because they seemto o
advantage over nonstaggered schemes and are more complicated to implement accu
in general coordinates. However, for incompressible flows they are attractive, becaus
artificial measures need to be taken to avoid spurious pressure oscillations and the p
cal boundary conditions suffice. Furthermore, for the incompressible case recently acct
staggered discretizations in general coordinates have appeared; some references, apa
those just quoted, are [5, 16, 24, 34, 42, 52, 53]. Given an accurate staggered scher
general coordinates, inclusion of compressibility is quite feasible along the lines alre:
laid out by Harlow and Amsden. Inclusion of accurate and efficient time discretization
in fact easier than for nonstaggered schemes, because there are no artificial regular
terms. Furthermore, as some of the test cases to be described show, accuracy and effic
of a staggered scheme turn out to compare quite well with standard schemes in the -
compressible case.

Here we will generalize the incompressible staggered scheme in general coordinates
cribed by Zijlemaet al. [52, 53] to the nonstationary compressible case. We specialize
the Euler equations, because with our approach viscosity plays no role in the diffic
ties associated witM | 0. Generalization to Navier—Stokes is straightforward. This will
therefore, not be explained, and we will only show results obtained for the Navier—Sto
equations. Compared to the earlier work quoted above, we unify the following two existi
methodologies, combining their advantages:

(a) a nondimensionalization similar to that of Shuetnal. [36] that eliminates the
singularity associated witM | O;
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(b) a general coordinate version of the staggered grid method of Harlow and Ams
[10, 11], similar to that of Shyy [38, 39].

Shueret al.[36] use a colocated scheme for compressible flows extended to weakly cc
pressible flows by preconditioning, falsifying transients, and not allowing using 0.
Shyy [38, 39] does not eliminate the singularity associated With 0, which we do by
our special nondimensionalization. This avoids a difficulty hinted at on page 203 of Harl
and Amsden [11], where it is advised to work with a scaled variable in solving the press
equation under certain circumstances, and the stabilizing mass diffusion term used in
is not needed here.

We can prescribe the Mach number to be arbitrarily small, including zero, in whi
case the incompressible scheme of Harlow and Welch [12] (in orthogonal coordinates
that of Zijlemaet al. [52, 53] (in general coordinates) is recovered. Moreover, tempor
accuracy is obtained in a simple manner, without introducing a pseudo-time variable
dual time stepping, as required in many of the works quoted above. Finally, we demonst
surprisingly good performance of the scheme in the fully compressible case.

For stationary problems, time-stepping to steady state is less efficient than applyir
well-designed iterative method to the stationary discretised equations, but we use ti
stepping here to show the feasibility of the method to obtain time-accurate solutions, wt
are harder to compute than stationary solutions in the presence of low Mach number eff

In Section 2 the dimensionless Euler equations and boundary conditions are prese
The discretisation and solution method are described in Section 3. Section 4 gives nume
results, showing Mach-uniform accuracy and efficiency.

2. DIMENSIONLESS EQUATIONS

The Euler equations are considered. Pressure is used as the primitive variable in:
of density, in order to handle the limil | 0. For brevity the equations are presented ir
Cartesian tensor notation, although in fact they are solved in general coordinates.
dimensional governing equations are

dp\ ap dp\ odh
L I G el @, =0, 1
(ap)h8t+_(8h)p8t+{pu)’ @
dpu” "
5+ (eu u) g = —Pa 2
h
%ﬁm%ﬂ:—W—Dm% 3)

whereu® = u, are the Cartesian velocity componenids the densityp is the pressure,
h is the enthalpy, angt is the specific heat ratio. The equation of state for an ideal g:
completes the system of equations:

y p
= 4
P=>"1h (4)
Although a nonconservative form for the energy equation is used, the numerical sch
to be used turns out to converge to genuine weak solutions. The above nonconserv
form is merely used for greater efficiency in the pressure correction time stepping sche
to be described and could be replaced by the conservative form.
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We will discuss internal flow in a two-dimensional channel or nozzle. The inflow ar
outflow boundaries are referred to by subscriptand,, respectively. When the inflow is
subsonich.,, Pout, andu,, o = 1, 2, are given. For supersonic inflow, all variables shoulc
be specified on the inlet boundary, so instead of the pressure at the outflow bounc
P IS given at the inflow boundary. On solid boundaries the impermeability condition
prescribedu,n® = 0 with n the normal on the solid wall. The initial conditions specify
p, u®, andh.

The equations are made dimensionless by scaling the variables by reference quan
o, hr, pr, we, the reference speed, and, the reference length, that still remain to be
chosen. The time is nondimensionalised by w,. The following dimensionless Euler
equations are obtained:

dp
— u*), =0, 5
ot + (pu®), (%)
dpu” B Pr

u“u o« =0, 6
op T (Ut s+ w2 P, (6)

oh
5 +u*h, = —(y — Dhu?,. )

In the standard compressible formulation the density is used as the primitive variable,
the pressure follows from the equation of state, so, quite naturallypfahe following
choice is usually made:

pr=po RT. (8)
Hence the factop: /o, w? in the dimensionless momentum equation (6) becomes

p_ART_ & 1 ©

prw?  prwZ  yw?  yMZ’

Therefore in the incompressible limi, | 0 the momentum equations (6) degenerate t
p.. = 0. Detailed mathematical analysis [21, 22, 25, 26] reveals that Ni O of the
compressible Euler and Navier—Stokes equations is singular. In this limit the solution of
compressible equations does not converge to the solution of the incompressible equat
but to the incompressible solution plus an acoustic field. The acoustic field disappears w
the initial conditions are chosen in a special way.

In order to obtain a Mach-uniform formulation in which the linkit | O is regular the
pressure is made dimensionless in a different way. In Panton [31] it is shown that
dimensionless pressure gradient is of the same order as the inertia tegnmis gqual to
Or w,z, that is, if the dimensionless pressure is defined to be

p=P P
,Orwr2 '

with p} a constant pressure level still to be chosen. A similar dimensionless pressur
introduced by Shueat al. [36]. This results in the following dimensionless form of the

Euler equations:
ap\ ap dp\ oh
It s ) = @ —Q, 10

(ap)hat +<8h)p8t (P (10)
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d(pu)*

s ((pW*uP) g = —pg, (11)
% +U'h, = —(y — Dhit,. (12)

Reference values based on boundary conditions and reservoir parameters are usec
resulting formulation is different from that used by Shetyal.[38—40]. The Mach number
at the inlet is defined by

w
Moo = 02 (13)
az,

8*

wherew, is the velocity of the flow and’, = /(y — 1)h, is the speed of sound. The
reference quantities are chosen equal to the stagnation condition at the inlet, denote
subscript O:

hy = <1+ TM;) hi,. (14)
%2 Y — 1 2 *2
ay” = 1—1—TMOO ass, (15)
_1 1/(y—1)
= (175 ie) " =
-1 y/(y=1)
P = <1+ VTM;) P (17)

o X _tw
L*’ B
p= P — pgut E
PEW3S hg’
* ua*
0=, u® = , a=12
*
Po Weo

where we have choseuf = p},. The equation of state (4) becomes

yM2 p y—1 ) -y/(y=1 1
- hy=_* "0 F o (14 7==M —1)+1|=, @18
p=p(p.h 1+V771M§oh+ p<(+ > M +11-. (18)
wherep, is defined by
P, = %t: gg. (19)
00 0

The dimensionless equation of state shows thaecomes independent pfasM, | O,
which is precisely what we want, because this eliminates acoustic modes. Furtherm
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in this limit the variation ofp remains®(1). This dimensionless formulation includes the
incompressible case, which is obtained by putfihg = 0.
The dimensionless subsonic boundary conditions become

-1 -1/(y-1
(pwl = (1+ szgo> COSUoy,
_1 .\ Vo
2 _ (14X =\m2 sin
-1 -1
Pout = 0.

For the supersonic infloyp,, must be prescribed instead pf:.

3. DISCRETISATION AND PRESSURE CORRECTION METHOD

3.1. Invariant Formulation

For computing flows in general domains the governing equations are written in coordin:
invariant form, using tensor notation,

ap\ ap ap\ dh
) ZF D I L 21
<8p>h8t + (ah)pat + (U, =0, (21)
8( U)a 14 «,
’g—t + ((pU)*UP) 5 = =@ p) . (22)
h
‘Z—t +U%, = —(y — DhUY, (23)

with (pU)* =a® . (pu) the contravariant momentum components and where the co
travariant metric tensor and base vectors are defined as

95”

gaﬁ — a(a) . a(ﬁ), a(a) — X
X

(24)

Here x are Cartesian coordinates in the physical dorfgiandg are boundary-conforming
curvilinear coordinates corresponding to Cartesian coordinates in the computational dor
G. For more details see [52, 53].

3.2. Discretisation in Space in General Coordinates

The compressible Euler equations will be discretised in space in boundary-fitted coo
nates using a finite volume scheme on a staggered grid for the reasons given in Section 1
scheme is designed such thatds | 0 the classical incompressible staggered grid metho
of Harlow and Welch [12] is recovered (in the Cartesian case). This may be expected to
Mach-independent accuracy and efficiency for small and medium Mach numbers. Figu
shows part of the computational grid with the staggered placement of the unknowns anc
corresponding control volumes. The discretisation in general coordinates introduces r
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pU' control volume

pU2 control volume

/' h control volume

FIG. 1. Grid in computational domaifs.

flux componentp Ve, V¥ = ,/gu®, g = det(g*”). The invariant discretisation in general
coordinates of the incompressible Navier—Stokes equations is described in [35, 52, 53

In subsonic flow second-order central discretisation is used for the spatial derivati\
and the goal of Mach-uniform accuracy and efficiency is achieved, as will be seen. In
case of transonic flows this scheme did not converge. Some form of irreversibility ne
to be built in to satisfy the entropy condition. Therefore, a first-order upwind scheme v
used for the energy equation. This proved to be sufficient for transonic flows, wher
for supersonic flows upwind discretisation for the momentum equations appeared tc
necessary as well. The simple first-order upwind scheme is used to show that the sche
also quite satisfactory for fully compressible flow. In order to obtain second-order accur
results and crisp resolution of contact discontinuities the same measures can be taken
standard compressible methods, such asimplementation of higher order upwind biased
schemes with flux limiting. In this way the higher order MUSCL scheme was implement
(see Section 4.3). The present scheme compares well with the first-order Godunov sct
for fully compressible flows, as will be seen.

In supersonic regions the density is biased in the upstream direction in the contin
equation, in order to satisfy the entropy condition. This was done using a Mach-depen
shift operator. Assuming ! to be the dominant velocity component, this is done as follows
In cells with a Mach number lower than-1d, with d a parameter to be chosen (in the
following, d = 0.1), no upstream bias is employed and central interpolation is used
evaluate the density in the velocity points. For cells with a Mach number abeve the
density in the continuity equation is shifted upstream using

ap\ ap o\ oh 0 1
— | = ~(pV
<8p>hat*'<ah> (p(p )
with pi 110 = %(pi,,- + pi11,j) asthe centrally evaluated density and, , ; as the shifted
evaluation of the density, given by

i+1/2,j

+ (VP =0  (25)

i-1/2,]

Pit1j2j = (05— Sy12))piv1j + 0.5+ G112 )01 - (26)

HereSis a continuous switch function defined by

vi (1 1/ M =1
Si2) = S(Vil+l/2,j’ Mity2)) = 2 mm(E, max(O, Z(%—i—l))).

V2]
(27)
The local Mach number in the cell center is computed as:
1 1 2 2 2 2
Miz,j _ MZ, (Vg2 +Viteeg)” + (Mg + Vi3_12) _ (28)

1+ 51m2 4go?;hi,j
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Mi112,j is found through linear interpolation. The switch functi®waries between 0 (no
bias) forM <1—dto % (full bias) forM > 1+ d.

3.3. Pressure Correction Method

In the incompressible case there is no time-derivative for the pressure. This is also
case in the present Mach-uniform formulation, as it should belyfet 0 the factonp/ap
in Eq. (25) is zero, according to the dimensionless equation of state. The standard workh
to do time-stepping in the incompressible case is the pressure correction method, alri
introduced by Harlow and Welch [12]. This method will also be employed here, for ¢
Mach numbers, in order to achieve Mach-uniform accuracy and efficiency.

For brevity, we leave the spatial derivatives undiscretised and writdor pU“. In
practice we discretise in space and incorporate the boundary conditions before discret
in time. The continuity and momentum equations are discretised in time as follows:

3,0 npn+1_pn 3,0 nhn+1_hn i1
o). st \sn/). T st 1- =0, (29
<8p>h st \an o ot ()" + (A= (m,)" = 0. (29)

(ma)n+l _ (ma)n
ot
= —(@(up"™ + A~ wpM) 4. (30)

+O((MH)MHUAM 5 + (L — ) (MUF),

Depending on the parametgrsandé, the discretisation is explicit or implicit. But in the
incompressible case itis needed to take 1, because then the pressure acts as a Lagrangi
multiplier to satisfy the divergence freedom constraint. With the pressure correction mett
first, a prediction for the momentum fietd** is computed from

(ma)* - (ma)n o % o o

T HOMY)TUNN sA =) UN] = —(@7 PN (31)
Next, a pressure correctiep = p"*! — p" is computed. To find the correction equation,
first (31) is subtracted from (30), neglecting the difference in the convection terms:

(ma)n+1 (ma)*

m —p(@(p™t — pM) 5. (32)

Van Kan [45] has shown for the incompressible case that neglecting the difference
the convection term does not deteriorate the temporal accuracy,aigd2, u =1 gives
second-order accuracy in time. Here, in the compressible case, at least first-order accl
is maintained. Next, the discrete divergence of the discretised version of (32) is taken,
the resulting expression fcﬁmf”a)”+1 is substituted in (29), which results in

8P _ 25t (q? _ ap\"sh
(8p) pt(8P) op = —p(M*)’, 4+ (1 — ) (M)~ (8h>p8t' (33)

This is called the pressure correction equation. For the computatigm/ép anddp/doh
the nondimensional equation of state (18) is used. Wikea h"*1 — h" is known, the
pressure correctiodp can be computed from (33), whereafter)"*+* can be found from
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(32). Thesh can be computed from the following discretisation of the energy equation:

hn+l —h"

5t + (UHM (O + (L —0)hY) = —(y — DU @O + (1 —0)h"). (34)

To obtain at the end of a time step the velocity componédty"+? from (m*)"*+1, the
mass fluxes are divided k2, which is computed from the equation of state. In practice
the Euler equations are first discretised in space before the pressure correction me
is applied, so that the equations derived in this section are linear algebraic systems
boundary conditions for the pressure correction equation are required, since the phy:
velocity and pressure boundary conditions have already been incorporated in the contir
and momentum equations, from which the pressure correction equation is derived.
spatial discretisation in general coordinates is described in [52, 53].

It is instructive to write down the fully discrete scheme for the one-dimensional ca:
We writex = 8t/8x, mt = m, §p = p"t1 — p", etc. The discrete continuity equation with
density bias is given by, writing = o/p (see (26)),

8pj + uiem™ V2 4 (1~ waEem V2 =0, (35)
This equation is Newton-linearised as
(em™ x~ o"m™ 4+ u"s5 — (uo)"8p. (36)
This results in the discrete continuity equation
j+1/2 j+1/2

8pj + ur(a"m™t +u"s5 — u"o"sp)| + 1= wrem)" 0. (37)

j-1/2 ji-1/2 —

Itis assumed that > 0 and that the flow is supersonic, so that the first-order upwind scher
is used and the density bias is in full force. This means that the switch furgtio(27) is
equal to%, sothatsp;, 4/, = dp;j. As a result the continuity equation (37) becomes

1
1
Spj + 1A (an+1/2mTIl/2 + Ul 1200 — U?+1/2“F+1/2§(5Pi+1 + dpj ))

1
— A (aj”_l/zmTJ_r%/z + U?_1/25pj,1 — UT_1/20?_1/2§(5PJ + 3,0]'1)>
+ @ = (oM 12 = 012M]-1/2) = 0. (38)

In this equationsp; will be replaced by(dp/dp)|ép; + (dp/3h)Tsh;. In the solution
procedure, first§h is computed from

1 i1
hi*t — hY+ SO0A(Ufyz + “T+1/2)hn+1‘jfl + 5@ =02 (Ul + Ul p)h"

j
j-1

nt1 j+1/2 j+1/2
+6Ay —DhI" (1 —-O)ry — D" =0 (39)
j-1/2 j—1/2
Next, the momentum is predicted according to
j+1/2 j+1/2

* % j+1
mHl/Z—m?H/Z—l—Hk(u”m)|j71/2+(1—G)A(u”m”)]jfl/z—k)»p”H* =0. (40)
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The momentum correction is defined by

n

i+1
mjﬁ/z M1 = —HA Bp‘ (41)

When this equation fomHl/2 and mJ 1/2 is substituted into the continuity equation (38)
divided byua, the pressure correction equation is found to be

—aj-18pj_1 + bjdp; — ¢j418pj11 = fj, (42)
where
ap\" 1
a.J 1= (M}\,)Ul -1/2 + <ap) (u?l/z - E(Ou)Tl/z) , (43)
by = () (0722 + 0712) + (22 PR . W2~ @W)]
J j+1/2 =12 ap j wh j+1/2 2 j+1/2 i-12 (>
(44)
1/0p\"
Ci+1 = (,U«A)UH_l/z + - 2 (3 ) (UU)?+1/27 (45)
P/

|
|
IR
Q
=)
3
*
+
/N
TR
|

j+1/2 95\ " 1
0
1)o“m”> —8h; 1( > <u'-‘_ — —(cw)_ )
-1/ i— ah . j—1/2 2 j—1/2
ap nr1 1 j+1/2
- () fi (a0t )]

ap\" 1
_5hj+1<a—f]>. (—E(au)Tﬂ/z). (46)

Our main goal here is to show Mach-uniform efficiency and accuracy. For computati
of both the steady states of stationary flows and time-accurate solutions of nonstatiol
problems time-stepping was used. This method is for stationary problems less effic
than applying a well-designed iterative method to the stationary discretised equation
suffices to show that the given solver does not degrad¢ 49 or when the flow becomes
supersonic. In the subsonic case, the spatial discretisation is fully central and the time
must be small enough to sufficiently enhance the main diagonals of the systems for
mass flux components and enthalpy, if an implicit scheme is used. There is a trade
here between size of time-step and number of iterations per time-step. All systems v
solved by a Krylov subspace iterative method for unsymmetric matrices, namely GMR
(see Vuik [50]). This method was preconditioned by ILU. Note that only systems for o
variable at a time need to be solved, which makes optimizing iterative solvers much ea
than when coupled systems are involved. The pressure correction equation is always we
diagonally dominant.

4. NUMERICAL RESULTS

4.1. Introduction

Two stationary test problems especially suited for testing computating methods w
varying Mach numbers have been selected. The first is flow through a channel with a bu



UNIFIED METHOD FOR COMPUTING FLOWS 163
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FIG. 2. Grid size 63x 22 used for subsonic and transonic computations.

alsotreatedin[7, 19, 20, 38]. The second is flow through a converging—diverging nozzle, :
treated by Shueet al.[36]. The parameters are chosen such that regions with very low a
medium or high Mach numbers appear. Standard methods for computing incompress
or compressible flow cannot cope with these flows, or at best in an inefficient manner.
use time-stepping starting from rest to converge to steady state@witl®.5 andu = 1.
The following termination criterion is used: max(U®)™* — (U)" < §t10°°.

Two nonstationary test problems were computed as well. The first is the shocktube p
lem posed by Sod [41], a frequently used test problem for compressible flow solvers.
second is a nonstationary nozzle flow to show that the scheme is suitable for nonstat
ary weakly compressible flow. For the time stepping method in nonstationary flows 1
parameters were chosen tothe- 1 andu = 1.

4.2. Stationary Flows

4.2.1.Channel with bump. Subsonic flowsSubsonic flow in a channel with a 10%
bump is computed. All equations are discretised using central differences. The size of
channel is [0, 3]x [0, 1], in which a boundary fitted nonuniform grid of 6322 cells is
generated (see Fig. 2). Results are givenMigg = 0, 107, 0.01, 0.1, and Q5. Note that
M. = 0 is allowed with our method. The boundary conditions arg:= 0, p, = 1. For
an inlet Mach number o, = 1 x 1078 and 0.5 the resulting iso-Mach lines are showr
in Fig. 3. Note that the pattern is symmetric, as it should be for subsonic flow throu
the specified channel. The computed Mach number distributions on the upper and Ic
boundary of the channel are compared to results obtained by Eidelnadj7] in Fig. 3.
The results are very similar. Our central scheme gives better symmetry than the (much
computing intensive) second-order upwind-biased Godunov scheme of [7] and contains
numerical diffusion, resulting in a 4% higher maximum Mach number.

Efficiency at low Mach numbersThe number of iterations and CPU time (using a
HP9000-735 workstation) required are listed in Table 1. Neither the number of iteratic

an

4T3
SU
575
6%
677

3
@
=1
o
S
LRI AR VAQTER T

FIG. 3. Mach number contour plot for ()1, = 1.10°5; (b) M, = 0.5.
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TABLE 1
Channel with 10% Bump, 6t=0.1

GMRES iterations

CPU Time
Mach [s] steps Total Itet.step
0.5 151 509 6108 12
0.1 73 220 3960 18
0.01 74 200 4200 21
10 74 200 4200 21
0 75 203 4263 21

nor the CPU time deteriorate at low Mach numbers. For increasing Mach numbers the f
takes more time to settle down to steady state, but CPU time per time step does not inci
(in fact, it decreases somewhat).

Transonic flow. Although our primary aim is to cover the no-man’s land between in
compressible and compressible flow, we show in the following examples that the pre:
staggered grid pressure correction method is quite suitable for fully compressible flow
well. In the channel discussed above we tdkg = 0.675 and obtain transonic flow. In
regions of transonic flow the upwind biased approximation for the density as explair
in Section 3 is used. Furthermore, for the energy equation a first-order upwind schem
employed. Again, a boundary-fitted grid of &322 cells is used (see Fig. 2). Mach number
contours are shown in Fig. 5. The location of the shock was at 70% of the bump, wt
Eidelmanet al. [7] found the shock to be at 72%. The maximum Mach number is 1.3
against 1.32 in [7]. At the bump, the shock is captured in four cells.

Supersonic flow. Supersonic flow is computed for a channel with 4% bump an
My = 1.65. For this type of flow the first-order upwind scheme is used for the momentt

075

0 99 x 33 Nodes, Eideiman et al.
0.7F

- 63 x 22 Nodes, Present

0.65|
0.6
055
0.5po-o
0.45
0.4

Tm

035 " . .
0 —x 05 1 1.5 2 25 3

FIG. 4. Mach number at upper and lower boundary of channel with bumpffgr= 0.5 compared with a
second-order Godunov method.
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FIG.5. Mach number contour plot fdvl,, = 0.675.

and energy equations. In Fig. 7 the Mach number contours are shown for computa
on a 190x 55 grid, shown in Fig. 6. The leading edge shock reflects from the top we
and intersects with the shock leaving the trailing edge. All shocks are resolved fairly w
although the reflecting one is somewhat smeared, as is to be expected with a first-c
upwind method. In Fig. 8 one can see that the agreement between our first-order acc
results and the results for the second-order Godunov method in [7] (where the grid siz
not mentioned) is good; locations of the shocks are the same. Furthermore, it is interes
to note that the shock position does not change with grid refinement (see Fig. 9). The sh
we computed are as sharp as in [7], except for the reflected shock on the upper bour
in the neighbourhood of = 2, and our extreme values are lower than those in [7]. Thi
is most likely due to the use of a first-order upwind scheme for the momentum equatic
Compared to the results in [7] for a first-order Godunov method it is found that the pres
scheme gives better crispness of resolution. A second-order upwind-biased scheme w
limiter can be easily implemented, but our aim here is merely to show the suitability of ¢
scheme for computing supersonic flow.

Viscous flow. Extension to the Navier—Stokes equations is straightforward and will n
be described. We give results for the channel with 10% bump with a uniform inlet Ma
number of 0.45, just as Shyy in [37]. The grid of QA9 cells is refined near the wall (see
Fig. 10). A laminar computation was performed for a Reynolds number-ol@. The
resulting Mach number contours are shown in Fig. 11. These contours are very simile
the results obtained by Shyy [37]. The thickness of the boundary layer is also in agreern
The computing time for low Mach numbers is in the same proportion to the time f
My = 0.45 as in the inviscid case.

4.2.2 Converging—diverging nozzleNext, the flow is computed in a converging/diverging
nozzle with the following contraction ratios: 5, 10, and 20. The inlet Mach number is ke
constant at 0.045. The size of the throat is kept constant at 0.4, and the size of the out
kept constant at 2.5 times the size of the throat. For all computations we have used @ 49

FIG. 6. Grid size 190x 55 used for supersonic computations.
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FIG. 7. Mach number contour plot fdv,, = 1.65.
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18 o Eidelman et al.

16

13

FIG. 8. Mach number at upper and lower boundary of channel with bumpfor= 1.65 compared with a
second-order Godunov method.
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FIG.9. Mach number at upper and lower boundary of channel with bumpMith= 1.65 for different grid
sizes.
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FIG. 10. Grid of size 99x 49 used for viscous computation.

nonuniform grid of the type shown in Fig. 12. The time step was kept constéina0.01.
First-order upwind discretisation was used both in the energy and in the momentum e
tions. In the computations for flow in nozzles with contraction ratios 5 and 10, the press
ratio was chosen g3, = 1, and the flow remained subsonic. The maximum Mach numbe
that occurred are listed in Table 2. For a contraction ratio of26; 60 was chosen so that
supersonic outflow occurred. In this case a large range of Mach numbers from 0.04¢
to 2.34 arose (see Fig. 13). When the solution was computed on a grid with four time:
many grid cells, the solution did not change. To obtain convergence on this grid, the ti
step had to be halved to 0.005.

Efficiency at low Mach numberslin the nozzle with a contraction ratio of 5 the flow
remains virtually incompressible. The maximum Mach number is 0.24. For a contract
ratio of 10 the maximum Mach number is 0.5, for 15 it is 1.82, and for 20 it is 2.67. Tt
CPU time and number of iterations for the nozzle do not increase significantly for low
Mach numbers, that is, smaller contraction ratios. On the contrary, there is an increas
computing time with increasing contraction ratio. This increase of CPU time is caused
the fact that the flow takes longer to settle down to steady state. But the results suffic
illustrate our main point, namely that accuracy and efficiency do not degrade in the prese
of low Mach numbers.

4.3. Nonstationary Flows

As stated before, one of the advantages of our method over preconditioning metho
that the transient behaviour is not falsified, so that time-accuracy is easily realised. We s
results for two nonstationary test cases, namely Sod’s shock tube problem test case
and a nonstationary flow with low Mach numbers.

1 <0.074

2 0.001

3 0.07¢8

4 0. 151

] 0.225

=" & 0.300
7 0.378

8 0.450

) 0.52¢

10 0.508

FIG. 11. Mach number contours fdvl,, = 0.45 and Re= 4 x 10°.
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FIG. 12. Grid of size 49x 10.

Shock tube problem.Sod'’s shock tube problem [41] is a Riemann problem with th
following left and right states:

p1= P1= 1.0,u; =0; P2 = 0.125 P2 = 0.1, u,=0. (47)
Sincews, = 0 we cannot use the previous nondimensionalisation. Instead we use
Pr = pla pr = plv hl’ = hla wr = 1 (48)

The time discretisation is as before; we take = 0.01 andAt = 0.001. The shock speed
is found to be 1.75, corresponding to a Courant number of 0.175. The pressure correc
method is used for time-stepping.

For the space discretisation of the momentum and energy equation the first-order up\
scheme was used. Because the flow is subsonic no upwind bias for the density is apr
The difficulties in computing the shock tube problem are to compute the expansion wave
the dicontinuities accurately and to compute the right wave speed. Our solutien@f.5
is compared with the exact solution at this time in Fig. 14.

Comparison of Fig. 14 with results in [41] shows that our results are as good as those
tained with a first-order Godunov scheme. It shows that our scheme converges to the co
weak solution and satisfies the entropy condition. The contact discontinuity is somew
smeared due to the use of the first-order upwind scheme. This can be improved by u
a higher order upwind scheme. For this we follow the MUSCL approach [46]. Assumi

TABLE 2
Nozzle with Inlet Mach Number of 0.045,6t = 0.01

GMRES iterations

Contraction Maximum CPU Time
ratio Mach no. [s] steps Total Iter/t.step
20 2.67 761 6792 95088 14
15 1.82 750 6790 95060 14
10 .83 220 1866 26124 14

5 4 300 2744 38416 14
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2350

21134
1.880 1
1.6454
1.410
1.1734
0.940
0.705 ¢

0.4704

4 02334
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0.0 12 2.4 36 48 6.0
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FIG. 13. (a) Mach number contour plot fav,, = 0.045; (b) Mach number at centerline of nozzle.

u > 0, M1 is evaluated as

1
Mit1/2) =M+ E\I’(ri+1/2)(mi —mi_1), (49)

where

Fig1/2 = % ()= max[o, min(Z, %r + % Zr)]. (50)
The energy equation is handles analogously. In Fig. 15 the solution obtained with
MUSCL scheme is compared to the exact solution. The shock and especially the cor
discontinuity have become more crisp. Due to our nonconservative discretisation of
energy equation, a tiny wiggle is formed in front of the contact discontinuity. The stagge!
scheme seems to be as accurate as nonstaggered schemes based on approximate R
solvers and flux limiting (see, for example, similar results [1, 13, 14].

Nonstationary nozzle.In order to test the method on a nonstationary low Mach numbe
flow, we have computed flow in the converging/diverging nozzle of Section 4.2.2 wi
nonstationary inflow. In this case the inlet Mach numbgy, varied between 0 and 0.045
with a period of 0.5 s. The resulting Mach number at the center line is plotted in Fig. :
No particular difficulties were encoutered.

5. CONCLUDING REMARKS

A method to compute flows has been described that has accuracy and efficiency unif
for very low and medium Mach numbers. A nondimensionalisation has been introdu

o
®

pressure
© ©°
A »

A
o
[

X X

FIG. 14. Comparison of first-order upwind scheme with exact solution.
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0.2
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FIG. 15. Comparison of MUSCL scheme with exact solution.

such that all quantities in the dimensionless Euler equations remain finit® @dvhen
the Mach number goes to zero. The dimensionless equations are discretised in ge
coordinates on a staggered grid and solved with a pressure correction method anc
plicit time stepping. From the numerical experiments the following conclusions can
drawn:

e Good results are obtained for low Mach number flow, includifg= 0.

e Mach number independent convergence is observed for subsonic flow.

e The staggered scheme is also accurate for fully compressible, transonic, and super:
flow. The Rankine—Hugoniot and entropy conditions seem to be satisfied.

e Time discretisation is straightforward. Nonstationary flows can be efficiently ar
accurately computed for Mach numbers ranging from zero to supersonic.

(HlT -
0124 s
[AR
0.084.

0.064 IR

0.04

FIG. 16. Nonstationary nozzle.
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